Picarro G2210-i——奶牛场甲烷排放的同位素特征研究江苏海兰达尔2023-03-03 15:39发表于江苏原文链接:https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2021JG006675研究背景和目的甲烷的同位素特征是判断甲烷浓度升高的来源的重要工具,大气甲烷的全球稳定碳同位素比值(表示为δ13CCH4)随着CH4的大气摩尔分数的增加向更负值转变。最新的同位素证据表明,甲烷的上升可能主要是由于生物甲烷排放的增加,因为相较于化石和
Picarro G2210-i——奶牛场甲烷排放的同位素特征研究
江苏海兰达尔 2023-03-03 15:39 发表于江苏
原文链接:
甲烷的同位素特征是判断甲烷浓度升高的来源的重要工具,大气甲烷的全球稳定碳同位素比值(表示为δ13CCH4)随着CH4的大气摩尔分数的增加向更负值转变。最新的同位素证据表明,甲烷的上升可能主要是由于生物甲烷排放的增加,因为相较于化石和热源甲烷,生物甲烷的13C更少。基于这一解释,可能导致大气中甲烷浓度上升的生物来源主要包括反刍动物、稻田和湿地等。
然而,鉴于我们对甲烷预算的理解仍然不完整,显然需要在区域一级对甲烷进行足够的同位素原位测量,以确定主导当前全球甲烷排放量上升的来源的位置和类型。
在这项研究中,研究人员提供了来自加州圣华金谷(该州91%的奶牛群养殖在此处)一个奶牛场的δ13CCH4季节性大气测量数据。这项研究的主要目的是测量厌氧粪肥泻湖和肠发酵源区排放的δ13CCH4,并利用这一同位素特征值来确定该地区其它奶牛场的下风向羽流采样中检测到的甲烷热点的主要来源。同时,这些同位素特征有助于完善加州和全球甲烷预算的知识体系。
研究人员使用移动平台收集了温室气体和污染物的连续测量数据,搭载设备包括Picarro CRDS分析仪G2210-i和G2401,GPS(记录地理位置和车速),二维声波风速计(测量风向、风速、空气温度和相对湿度)以及校准气瓶。从高度为2.87m的采样口吸入样品空气测量以下痕量气体:甲烷(CH4)、δ13CCH4、二氧化碳(CO2)、一氧化碳(CO)、乙烷(C2H6)。在每个测量周期的前后分别使用高、低两种浓度的混合标准气体对测量气体进行了校正。其中2018年秋季、2019年春季和2019年夏季使用的标气同位素值为-39.5‰,2019年秋季为-40.7‰,2020年冬季为-38.5‰。每个季节在参考测量地点收集微气象测量数据,使用的是安装在粪肥泻湖附近固定塔上的三维超声风速计(如下图1)。测量高度为2.4和11m,频率为20Hz,为了进行分析,只使用了来自2.4m高度测量的气象数据。另外在2020年1月15日,使用了一个由透明PVC材料制成的长方体腔室,用来从谷仓和静态粪堆中分离和测量。该腔室被放置在谷仓或粪堆表面,并通过Synflex管与移动平台的气体分析系统连接。对于每个样本,收集了10分钟的测量值。同时还通过与移动平台气体分析系统相连的同步管,测量了不同种类奶牛呼吸排放的δ13CCH4。奶牛场不同来源的甲烷排放具有不同的甲烷同位素特征,在不同季节具有可比性(如下图3)。其中肠道发酵源的δ13CCH4信号比粪肥泻湖的甲烷更低。动物饲养区的δ13CCH4范围为-69.7±0.6‰~-51.6±0.1‰,而粪肥泻湖的δ13CCH4范围为-49.5±0.1‰~-40.5±0.2‰。同时观察到粪肥泻湖的同位素特征有一些细微的季节差异。甲烷观测值在畜栏、谷仓和粪肥泻湖之间的差异很大。在所有季节中,畜栏和谷仓的甲烷平均摩尔分数分别为5.4±3.4和8.5±6.3ppm,粪肥泻湖排放最高,为18.4±18.2ppm。图3 测量农场(畜栏、谷仓和粪肥泻湖)的季节性δ13CCH4同位素特征甲烷的稳定碳同位素测量是区分肠道和粪便甲烷的一种有价值的源解析技术。在试验农场内,肠道发酵源区和粪肥泻湖之间的δ13CCH4特征区分明显。这些源特征在整个季节都具有可比性,特别是来自粪肥泻湖,并且彼此之间的差异至少为~8‰。通过在下风向的观测显示,肠道发酵衍生的甲烷贡献率羽流中甲烷的0~93%,这随着排放足迹中动物畜舍和泻湖的数量而变化。测量奶牛场下风向甲烷的13C可能是监测和量化肠道和粪便排放比的有用工具,并可通过估算甲烷来源的贡献来评估减排策略的有效性。
Picarro G2210-i高精度碳同位素分析仪
Picarro G2210-i 同位素分析仪专为满足科学界实施实时甲烷排放源归属的需求而设计。高精度测量大气中甲烷和乙烷的功能与二氧化碳和水汽测量相结合,为用户提供一种用来测量并确定垃圾填埋场、压裂站和废弃油气井等甲烷排放源的独特工具。
审核人:史恒霖